Derivation of third order Runge–Kutta methods (ELDIRK) by embedding of lower order implicit time integration schemes for local and global error estimation
نویسندگان
چکیده
Abstract Three prominent low order implicit time integration schemes are the first Euler-method, second trapezoidal rule and Ellsiepen method. Its advantages stability comparatively computational cost, however, they require solution of a nonlinear system equations. This paper presents general approach for construction third Runge–Kutta methods by embedding above mentioned into class ELDIRK-methods. These will be defined to have an Explicit Last stage in Butcher array Diagonal Implicit (DIRK) methods, with consequence, that no additional equations must solved. The main results—valid also non-linear ordinary differential equations—are as follows: Two extra function calculations required embed Euler-method one calculation is trapezoidal-rule method, obtain properties, respectively. numerical examples concerned parachute viscous damping two-dimensional laser beam simulation. Here, we verify higher convergence behaviours proposed new ELDIRK-methods, its successful performances asymptotically exact global error estimation so-called reversed embedded RK-method shown.
منابع مشابه
asymptotic property of order statistics and sample quntile
چکیده: فرض کنید که تابعی از اپسیلون یک مجموع نامتناهی از احتمالات موزون مربوط به مجموع های جزئی براساس یک دنباله از متغیرهای تصادفی مستقل و همتوزیع باشد، و همچنین فرض کنید توابعی مانند g و h وجود دارند که هرگاه امید ریاضی توان دوم x متناهی و امیدریاضی x صفر باشد، در این صورت می توان حد حاصلضرب این توابع را بصورت تابعی از امید ریاضی توان دوم x نوشت. حالت عکس نیز برقرار است. همچنین ما با استفاده...
15 صفحه اولEffective order strong stability preserving RungeKutta methods
We apply the concept of effective order to strong stability preserving (SSP) explicit Runge–Kutta methods. Relative to classical Runge–Kutta methods, effective order methods are designed to satisfy a relaxed set of order conditions, but yield higher order accuracy when composed with special starting and stopping methods. The relaxed order conditions allow for greater freedom in the design of ef...
متن کاملTHIRD-ORDER AND FOURTH-ORDER ITERATIVE METHODS FREE FROM SECOND DERIVATIVE FOR FINDING MULTIPLE ROOTS OF NONLINEAR EQUATIONS
In this paper, we present two new families of third-order and fourth-order methods for finding multiple roots of nonlinear equations. Each of them requires one evaluation of the function and two of its first derivative per iteration. Several numerical examples are given to illustrate the performance of the presented methods.
متن کاملImplicit-explicit higher-order time integration schemes for computations of structural dynamics with fluid-structure interaction
In this paper higher order implicit Runge-Kutta schemes are applied to fluid-structure interaction (FSI) simulations. A staggered approach with a structural predictor is applied to an FSI problem. The equations governing the dynamics of the structure are integrated in time by the Explicit Single Diagonal Implicit Runge-Kutta (ESDIRK) schemes and the arbitrary high order finite volume scheme is ...
متن کاملKrylov Implicit Integration Factor Methods for Semilinear Fourth-Order Equations
Implicit integration factor (IIF) methods were developed for solving time-dependent stiff partial differential equations (PDEs) in literature. In [Jiang and Zhang, Journal of Computational Physics, 253 (2013) 368–388], IIF methods are designed to efficiently solve stiff nonlinear advection–diffusion–reaction (ADR) equations. The methods can be designed for an arbitrary order of accuracy. The st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Mechanics
سال: 2023
ISSN: ['0178-7675', '1432-0924']
DOI: https://doi.org/10.1007/s00466-023-02347-2